667 research outputs found

    Raviart Thomas Petrov-Galerkin Finite Elements

    Full text link
    The general theory of Babu\v{s}ka ensures necessary and sufficient conditions for a mixed problem in classical or Petrov-Galerkin form to be well posed in the sense of Hadamard. Moreover, the mixed method of Raviart-Thomas with low-level elements can be interpreted as a finite volume method with a non-local gradient. In this contribution, we propose a variant of type Petrov-Galerkin to ensure a local computation of the gradient at the interfaces of the elements. The in-depth study of stability leads to a specific choice of the test functions. With this choice, we show on the one hand that the mixed Petrov-Galerkin obtained is identical to the finite volumes scheme "volumes finis \`a 4 points" ("VF4") of Faille, Gallo\"uet and Herbin and to the condensation of mass approach developed by Baranger, Maitre and Oudin. On the other hand, we show the stability via an inf-sup condition and finally the convergence with the usual methods of mixed finite elements.Comment: arXiv admin note: text overlap with arXiv:1710.0439

    Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM

    Get PDF
    AbstractThe paper addresses the properties of finite element solutions for the Helmholtz equation. The h-version of the finite element method with piecewise linear approximation is applied to a one-dimensional model problem. New results are shown on stability and error estimation of the discrete model. In all propositions, assumptions are made on the magnitude of hk only, where k is the wavelength and h is the stepwidth of the FE-mesh. Previous analytical results had been shown with the assumption that k2h is small. For medium and high wavenumber, these results do not cover the meshsizes that are applied in practical applications. The main estimate reveals that the error in H1-norm of discrete solutions for the Helmholtz equation is polluted when k2h is not small. The error is then not quasioptimal; i.e., the relation of the FE-error to the error of best approximation generally depends on the wavenumber k. It is noted that the pollution term in the relative error is of the same order as the phase lead of the numerical solution. In the result of this analysis, thorough and rigorous understanding of error behavior throughout the range of convergence is gained. Numerical results are presented that show sharpness of the error estimates and highlight some phenomena of the discrete solution behavior. The h-p-version of the FEM is studied in Part II

    Stable Generalized Finite Element Method (SGFEM)

    Get PDF
    The Generalized Finite Element Method (GFEM) is a Partition of Unity Method (PUM), where the trial space of standard Finite Element Method (FEM) is augmented with non-polynomial shape functions with compact support. These shape functions, which are also known as the enrichments, mimic the local behavior of the unknown solution of the underlying variational problem. GFEM has been successfully used to solve a variety of problems with complicated features and microstructure. However, the stiffness matrix of GFEM is badly conditioned (much worse compared to the standard FEM) and there could be a severe loss of accuracy in the computed solution of the associated linear system. In this paper, we address this issue and propose a modification of the GFEM, referred to as the Stable GFEM (SGFEM). We show that the conditioning of the stiffness matrix of SGFEM is not worse than that of the standard FEM. Moreover, SGFEM is very robust with respect to the parameters of the enrichments. We show these features of SGFEM on several examples.Comment: 51 pages, 4 figure

    Numerical Methods for Multilattices

    Get PDF
    Among the efficient numerical methods based on atomistic models, the quasicontinuum (QC) method has attracted growing interest in recent years. The QC method was first developed for crystalline materials with Bravais lattice and was later extended to multilattices (Tadmor et al, 1999). Another existing numerical approach to modeling multilattices is homogenization. In the present paper we review the existing numerical methods for multilattices and propose another concurrent macro-to-micro method in the numerical homogenization framework. We give a unified mathematical formulation of the new and the existing methods and show their equivalence. We then consider extensions of the proposed method to time-dependent problems and to random materials.Comment: 31 page

    Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

    Get PDF
    We prove the inf-sup stability of a discontinuous Galerkin scheme for second order elliptic operators in (unbalanced) mesh-dependent norms for quasi-uniform meshes for all spatial dimensions. This results in a priori error bounds in these norms. As an application we examine some problems with rough source term where the solution can not be characterised as a weak solution and show quasi-optimal error control

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    Multiscale Partition of Unity

    Full text link
    We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for 'cheap' parameter choices.Comment: Proceedings for Seventh International Workshop on Meshfree Methods for Partial Differential Equations, 18 pages, 3 figure

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    On quantifying uncertainties for the linearized BGK kinetic equation

    Full text link
    We consider the linearized BGK equation and want to quantify uncertainties in the case of modelling errors. More specifically, we want to quantify the error produced if the pre-determined equilibrium function is chosen inaccurately. In this paper we consider perturbations in the velocity and in the temperature of the equilibrium function and consider how much the error is amplified in the solution

    A priori convergence estimates for a rough Poisson-Dirichlet problem with natural vertical boundary conditions

    Get PDF
    Stents are medical devices designed to modify blood flow in aneurysm sacs, in order to prevent their rupture. Some of them can be considered as a locally periodic rough boundary. In order to approximate blood flow in arteries and vessels of the cardio-vascular system containing stents, we use multi-scale techniques to construct boundary layers and wall laws. Simplifying the flow we turn to consider a 2-dimensional Poisson problem that conserves essential features related to the rough boundary. Then, we investigate convergence of boundary layer approximations and the corresponding wall laws in the case of Neumann type boundary conditions at the inlet and outlet parts of the domain. The difficulty comes from the fact that correctors, for the boundary layers near the rough surface, may introduce error terms on the other portions of the boundary. In order to correct these spurious oscillations, we introduce a vertical boundary layer. Trough a careful study of its behavior, we prove rigorously decay estimates. We then construct complete boundary layers that respect the macroscopic boundary conditions. We also derive error estimates in terms of the roughness size epsilon either for the full boundary layer approximation and for the corresponding averaged wall law.Comment: Dedicated to Professor Giovanni Paolo Galdi 60' Birthda
    corecore